网站首页
产品中心
资料下载
关于我们
资讯动态
所有栏目
公司资讯
行业动态
232
传感器助力环境检测 自动驾驶时代即将到来
2021/12/3
在自动驾驶运营范围内进行自主采集、构建、更新地图。这条路线运营成本相对较高,比较适合有限区域或者特定场景内的自动驾驶,比如固定园区、机场等。
利用诸多终端车辆进行众包建图。这些终端车辆为云端服务器构建、更新高精地图的数据,同时也共享更高质量的高精地图服务,形成数据闭环。这条路线比较适用于当前比较火热的Robotaxi或者乘用车领域。
一种比较激进的路线,即自动驾驶系统不会过度依赖高精地图,车辆具有很高的局部区域感知能力,结合道路级的普通地图就可以支撑自动驾驶功能,特斯拉是这条路线的代表之一。
感知模块主要通过传感器信息解决“周围环境是什么样”的问题。当前火热的深度学习技术推动了感知技术的发展,感知技术又可以细分为检测、跟踪、预测。
检测主要是将不同传感器的观测信息输给深度学习模型,可以检测出车辆、行人、交通标识等目标物;跟踪的作用是给每个目标物一个track ID,以实现对这个目标的持续观测,进而计算出这个目标的速度以及预测未来轨迹。预测基于时序上的检测和跟踪结果,结合道路信息预估目标物未来可能的运动轨迹,可以为路径规划提供更多的信息,也使系统更加智能。
模拟给予数据支撑
除了传感器、定位、感知、规划和控制几大核心技术之外,还有仿真技术,它是自动驾驶技术中容易忽略的一部分。自动驾驶领域的“长尾”问题是急需解决的问题,比如基于深度学习模型的各种感知技术。现阶段,深度学习模型对于“见过”的或者类似的场景能够准确感知,但对于未见过的场景大概率会出现错误的感知,这对于自动驾驶尤其是高自动驾驶来说是很致命的。
仿真技术中一个很重要的应用就是可以虚拟化很多逼真的场景,为深度学习模型的训练提供海量数据,而且可以针对一些不常见的场景进行足够的数据生产,从训练样本的数量和多样性给予深度学习模型足够的支撑。
此外,仿真技术还有很多其他应用,比如可以模拟一些危险的驾驶场景,包括碰撞、各种交通事故等,一定程度上使得自动驾驶系统测试不再强依赖于真实场景的测试验证,很大幅度降低测试验证成本、提升效率。
目前,高自动驾驶技术虽然仍不够成熟,存在争议,但相信随着科学技术的发展,经过一代代人的努力,自动驾驶技术定会走进千家万户,改善人们生活。
下一个
温湿度记录仪怎么读取?
安徽精测智能科技有限公司
向您推荐
传感器助力环境检测 自动驾驶时代即将到来
长按屏幕
保存至相册分享至朋友圈
产品中心
关于我们
企业资讯
资料下载
友情链接:
百度
|
网新科技
|
诏业科技
|
网站优化
|
徽商网
|
网站设计
|
网站制作
|
采买吧
M612标准版通用模板 版权所有
皖ICP备2021017382号-1
免责声明
电话
地图
咨询